Posts
sirlis
Cancel

Prototypical Network 又称为原型网络,是2017年 NIPS 会议论文提出的一种神经网络训练方法,是一种基于度量(Metrix-based)的小样本学习方法,通过计算 support set 中的嵌入中心,然后通过衡量新样本与这些中心的距离来完成分类。

Reptile 于2018年由 OpenAI 提出,是一种非常简单而有效的基于优化的(Optimized-based)小样本学习方法,通过多步梯度下降来学习一个较优的模型初始参数。

LaTeX 是一种高质量的排版系统,被广泛的期刊杂志所支持,让笔者仅需要关注内容本身,而无需过多的为格式和排版而费心,具备高质量的表格、公式书写体验。

MAML 是2017年 Chelsea Finn 大佬提出的一种基于优化(Optimized-based)的小样本学习方法,核心在两个不同的数据集中分别计算梯度和更新参数。

小样本学习(Few-Shot Learning)问题是一个新兴的机器学习问题,旨在研究当样本个数严重不足时,如何训练一个模型,能够快速的完成学习(分类、回归、强化学习等)任务。进一步引入元学习的思想来解决小样本学习问题。

本文介绍了 Pytorch 中针对计算机视觉方面的基本数据库类Dataset,基本的手写数字数据库MNIST,以及数据库加载函数 DataLoader。

本文介绍了深度学习中,卷积网络的基本知识,包括2d卷积层、池化层、线性层、softmax 激活函数、交叉熵损失函数等,并结合它们在 Pytorch 中的定义和实现进行说明。

本文介绍了 Python 一些基本的小知识,如 name = ‘main’、init、super 等等。

本文介绍了深度学习中的基本概念,包括 batch、epoch、iteration、optimizer等,其中优化器包括 BGD、SGD、Adam等,为后深度学习提供基础。

本文介绍了如何在 Markdown 编辑器 Typora 中自动为标题添加编号,包括正文标题自动编号、目录自动编号、侧边栏自动编号。